Kinetics of non-isothermal crystallization of ternary \(\text{Se}_{80}\text{Te}_{20-x}\text{Zn}_x \) glasses

Anis Ahmad\(^a\), Shamshad A. Khan\(^{b,c,\ast}\), A.A. Al-Ghamdi\(^b\), Faisal A. Al-Agel\(^b\), Kirti Sinha\(^a\), M. Zulfequar\(^d\), M. Husain\(^d\)

\(^a\) Department of Physics, University of Lucknow, Lucknow, U.P. 226007, India
\(^b\) Department of Physics, Faculty of Science, King Abdul Aziz University, Jeddah 21589, Saudi Arabia
\(^c\) Department of Physics, St. Andrew's College, Gorakhpur, U.P. 273001, India
\(^d\) Department of Physics, Jamia Millia Islamia, New Delhi 110025, India

Abstract

The crystallization kinetics of \(\text{Se}_{80}\text{Te}_{20-x}\text{Zn}_x \) with \(x = 0.5, 1.0, 1.5, 2.0 \) and \(2.5 \) chalcogenide glasses were investigated using non-isothermal crystallization approach. The glass transition temperature (\(T_g \)) and crystallization temperature (\(T_c \)) of these glasses were determined using the differential scanning calorimeter at different heating rates. The dependence of \(T_g \) and \(T_c \) on the heating rate (\(\beta \)) has been used for the determination of the activation energy of crystallization (\(E_c \)), the activation energy of structural relaxation (\(E_t \)), crystallization enthalpy (\(\Delta H_c \)) and the Avrami exponent (\(n \)). It was found that the enthalpy released is minimum at 2.5% of Zn, hence, the glass with 2.5% of Zn is most stable in the \(\text{Se}_{80}\text{Te}_{20-x}\text{Zn}_x \) system. The crystallization kinetics for the glasses was studied by using the modified Kissinger and Ozawa equations.