

Kingdom of Saudi Arabia
Kíng $\mathcal{A} b d u l a z i z z ~ U n i v e r s i t y ~$
Faculty of Science-Mathematics Department
Final Term Exam (120 Minutes) - (204 Math).
3/7/1433 H - 24/5/2012 A.D.
Second Semester 1432-1433 H

Model A

Name:	Section:
Student's I.N. :	Serial Number:

Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Total Marks (40)

(Answer the following questions)

1	Choose the correct answer \quad [10 Marks]
(i)	The differential equation $x y^{\prime}-y=x^{2}$ is (a) Recati (b) Linear (c) Bernoulli
(ii)	The differential equation $y^{\prime}=\left(\frac{y}{x}\right)^{2}-\frac{y}{x}$ is (a) Homogenous (b) Exact (c) Separable
(iii)	If $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$ is any set of n linearly independent solutions of a homogeneous linear differential equation of order n, then $y=c_{1} y_{1}+c_{2} y_{2}+c_{3} y_{3}+\ldots+c_{n} y_{n}$ is (a) a solution (b) the general solution
(iv)	The D. E. $y^{\prime \prime}+y=0, y(0)=4, y^{\prime}(0)=6$ is called (a) Initial - value problem (b) Boundary - value problem
(v)	$\ell\{U(t-a)\}=\frac{e^{-a s}}{s}$ (a) true (b) false
(vi)	$\ell\{f * g\}=\ell\{f(t)\} \ell\{g(t)\}$ (a) true (b) false
(vii)	$\ell^{-1}\left\{\frac{1}{s^{5}}\right\}=\frac{1}{24} t^{4}$ (a) true (b) false
(viii)	$\ell\left\{t^{2} f(t)\right\}=-\frac{d^{2}}{d x^{2}} F(s)$ (a) true (b) false
(ix)	The function $f(t)=e^{t^{2}}$ is not exponential order (a) true (b) false
(x)	The function $F(s)=\frac{s}{s+4}$ is not the Laplace transform of a function that is piecewise continuous and of exponential order (a) true (b) false

2 Solve the differential equation:

$$
\frac{d y}{d x}=2+\sqrt{y-2 x+4}
$$

3 Solve the differential equation:

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}
$$

$4 \quad$ Solve $\quad \frac{d x}{d t}=-5 x-y ; \quad \frac{d y}{d t}=4 x-y$

$$
x(0)=0 ; \quad y(0)=1
$$

5(a) Evaluate:
(i) $\quad \ell^{-1}\left\{\frac{1}{s^{2}+9} e^{\frac{-\pi s}{2}}\right\}$
(ii) $\ell^{-1}\left\{\frac{2 s+5}{s^{2}-4 s+20}\right\}$

5(b) Solve $f(t)=t+1-\int_{0}^{t} f(\tau)(t-\tau) d \tau$ for $f(t)$.

6 Use the Laplace transform to solve the IVP:

$$
y^{\prime \prime}+9 y=e^{t}, \quad y(0)=0, y^{\prime}(0)=0
$$

