KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS

Exam/Course: Final Exam - Math-204

Student Name:	Student University Number:				
Instructor Name:	Section:				
Time Allowed: 120 Minutes	Jan. 20, 2011				
(Q1) Select the correct response:					
(i) The D.E. $\frac{dy}{dx} = \frac{x-y}{x^2}$ is					
\Box linear \Box Bernoulli \Box separable	(2Pt.)				
(ii) The D.E. $\frac{dy}{dx} = \frac{x}{y} + \frac{y}{x} + 1$ is					
\square exact \square Ricatti \square homogeneous	(2Pt.)				
(iii) $y = \frac{1}{x^2}$ is the unique solution of (IVP): $y' + 2xy^2$	=0; y(-1)=1				
\Box true \Box false	(2Pt.)				
(iv) There is a particular solution of $y' + P(x)y = Q(x)$) in the form $\int Q(t)e^{\int P(t)dt}dt$				
\Box true \Box false	(2Pt.)				
(v) The function $f(t) = t^{-1}$ is not piecewise continuous	ıs				
\Box true \Box false	(2Pt.)				
(vi) The function $f(t) = e^{\sqrt{t}}$ is not of exponential order	er				
\Box true \Box false	(2Pt.)				
(vii) The function $F(s) = \frac{s}{s+4}$ is the Laplace transform	n of a function that is piecewise contin-				
uous and of exponential order					
\Box true \Box false	(2Pt.)				
$(viii)\ \ell^{-1}\{F(s)G(s)\} \neq \ell^{-1}\{F(s)\}\ell^{-1}\{G(s)\}$					
\Box true \Box false	(2Pt.)				

 (Q_2) A mass weighing 8 pounds is attached to a 4-feet-long spring. At equilibrium the spring measures 6 feet. If the mass is initially released from the rest at a point 2 feet below the equilibrium position. Find the displacements x(t) if it is further known that the surrounding medium offers a resistance numerically equal to 2 times the instantaneous velocity. (10Pt.)

 (Q_3) Find the general solution of: $y''-2y'+y=e^ttan^{-1}t$ (10Pt.)

(8Pt.)

 (Q_4) Find the general solution of: y(x+y+1)dx+(x+2y)dy=0

 $(Q_5) \ \textbf{Find the Laplace transform} : (i) \ \ell\{te^{2t}\sinh 3t\}, \qquad (ii) \ \ell\{\cos t \ u(t-\pi)\} \eqno(8Pt.)$

 $(Q_6) \ {\bf Find \ the \ inverse \ Laplace \ transform:} \ (i) \ \ell^{-1}\{\tfrac{s}{(s^2+1)^2}\}, \qquad (ii) \ \ell^{-1}\{\tfrac{e^{-\pi s}}{s^2+4s+13}\} \qquad (10Pt.)$

 $(Q_7) \ \textbf{Use Laplace transform to solve:} \ y'' + y = g(t); \ y(0) = 1, \ y'(0) = 2, \ (10Pt.)$

$$g(t) = \begin{cases} 0 & \text{if } 0 \le t \le \pi, \\ \cos t & \text{if } t > \pi. \end{cases}$$

Answer only one of the following two questions:

(Q₈) Solve:
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}; y(0) = \frac{\sqrt{3}}{2}$$
 (8Pt.)

$$(Q_9)$$
 Solve: $y^{\frac{1}{2}} \frac{dy}{dx} + y^{\frac{3}{2}} = x; \ y(0) = 4$ (8Pt.)

Q1	Q2	Q3	Q4	$\mathbf{Q5}$	Q 6	Q7	$\mathbf{Q8}$	Q 9	Sum	Bal.