MODEL: C

KING ABDULAZIZ UNIVERSITY

DEPARTMENT OF MATHEMATICS

Exam/Course: Final Exam - Math-204

Student Name:
Instructor Name:
Time Allowed: 120 Minutes

Student University Number:

Section:

Jan. 20, 2011

$(Q 1)$ Select the correct response:

(i) The D.E. $\frac{d y}{d x}=\frac{x-y}{x^{2}}$ isBernoull \square separable
(ii) The D.E. $\frac{d y}{d x}=\frac{x}{y}+\frac{y}{x}+1$ is
\square exactRicatti \square homogeneous
(iii) $y=\frac{1}{x^{2}}$ is the unique solution of (IVP): $y^{\prime}+2 x y^{2}=0 ; y(-1)=1$ \square truefalse
(iv) There is a particular solution of $y^{\prime}+P(x) y=Q(x)$ in the form $\int Q(t) e^{\int P(t) d t} d t$ \square truefalse
(v) The function $f(t)=t^{-1}$ is not piecewise continuous \square truefalse
(vi) The function $f(t)=e^{\sqrt{t}}$ is not of exponential order\square truefalse
(vii) The function $F(s)=\frac{s}{s+4}$ is the Laplace transform of a function that is piecewise continuous and of exponential order
\square true \square false
(viii) $\ell^{-1}\{F(s) G(s)\} \neq \ell^{-1}\{F(s)\} \ell^{-1}\{G(s)\}$
\square truefalse
$\left(Q_{2}\right)$ A mass weighing 8 pounds is attached to a 4 -feet-long spring. At equilibrium the spring measures 6 feet. If the mass is initially released from the rest at a point 2 feet below the equilibrium position. Find the displacements $x(t)$ if it is further known that the surrounding medium offers a resistance numerically equal to 2 times the instantaneous velocity.
$\left(Q_{4}\right)$ Find the general solution of: $\quad y(x+y+1) d x+(x+2 y) d y=0$
$\left(Q_{5}\right)$ Find the Laplace transform: (i) $\ell\left\{t e^{2 t} \sinh 3 t\right\}, \quad$ (ii) $\ell\{\cos t u(t-\pi)\} \quad$ ($8 P t$.)
$\left(Q_{6}\right)$ Find the inverse Laplace transform: $($ i $) \ell^{-1}\left\{\frac{s}{\left(s^{2}+1\right)^{2}}\right\}, \quad$ (ii) $\ell^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+4 s+13}\right\} \quad$ (10Pt.)
$\left(Q_{7}\right)$ Use Laplace transform to solve: $y^{\prime \prime}+y=g(t) ; y(0)=1, y^{\prime}(0)=2$,

$$
g(t)= \begin{cases}0 & \text { if } 0 \leq t \leq \pi \\ \cos t & \text { if } t>\pi\end{cases}
$$

Answer only one of the following two questions:
$\left(Q_{8}\right)$ Solve: $\frac{d y}{d x}=\sqrt{\frac{1-y^{2}}{1-x^{2}}} ; y(0)=\frac{\sqrt{3}}{2}$
(8Pt.)
$\left(Q_{9}\right)$ Solve: $y^{\frac{1}{2}} \frac{d y}{d x}+y^{\frac{3}{2}}=x ; y(0)=4$
(8Pt.)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Sum	Bal.

