KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS Exam/Course: Final Exam - Math-204

Student Name:	Student University Number:							
Instructor Name:	Section:							
Time Allowed: 120 Minutes	Jan. 20, 2011							
(Q1) Select the correct response:								
(i) The D.E. $(x^2 + 4) dy = (2x - 8xy^2) dx$ is								
$\Box \ \text{exact} \Box \ \text{homogeneous} \Box \ \text{separable}$	(2Pt.)							
(<i>ii</i>) The D.E. $(yx^2 - x)dx = dy$ is								
\Box Ricatti \Box linear \Box Bernoulli	(2Pt.)							
(<i>iii</i>) $y = \pi$ is the unique solution of (IVP): $\frac{dy}{dx} = x^2 \sin y$; $y(0) = \pi$								
\Box true \Box false	(2Pt.)							
(iv) There is a particular solution of $y' + P(x)y = Q(x)$ in the form $\int Q(t)e^{\int P(t)dt}dt$								
\Box true \Box false	(2Pt.)							
(v) The function $f(t) = \frac{\sin 3t}{t}$ is piecewise continuous								
\Box true \Box false	(2Pt.)							
(vi) The function $f(t) = \cos t$ is not of exponential ord	function $f(t) = \frac{\sin 3t}{t}$ is piecewise continuous \Box false (2Pt.)							
\Box true \Box false	(2Pt.)							
(vii) The function $F(s) = \ln \frac{s^2}{s^2+4}$ is the Laplace transform of a function that is piecewise con-								
tinuous and of exponential order								
\Box true \Box false	(2Pt.)							
$(viii) \ \ell^{-1}\{F(s)G(s)\} = f(t) * g(t)$								
\Box true \Box false	(2Pt.)							

 (Q_2) A mass weighing 24 pounds is attached to a 8-feet-long spring. At equilibrium the spring measures 14 feet. If the mass is initially released from the equilibrium position with an upward velocity 3 feet per second. Find the displacements x(t) if it is further known that the surrounding medium offers a resistance numerically equal to 4 times the instantaneous velocity. (10*Pt*.) (Q_3) Find the general solution of: $y''-4y = \frac{e^{2x}}{x}$ (10Pt.)

 (Q_4) Find the general solution of: $(y^2 - x) dx + xy dy = 0$ (8Pt.)

(Q₅) Find the Laplace transform: (i) ℓ { $te^{-t}\cos t$ }, (ii) ℓ { $\int_0^t \sin \tau \cos(t-\tau) d\tau$ } (8Pt.)

 $(Q_6) \text{ Find the inverse Laplace transform: } (i) \ \ell^{-1}\{\frac{se^{-\pi}}{s^2+2s+10}\}, \qquad (ii) \ \ell^{-1}\{\frac{s}{(s^2+1)^2}\}$ (10Pt.)

(Q₇) Use Laplace transform to solve: $\frac{d^2x}{dt^2} + \omega^2 x = F_0 \cos \omega t$; x(0) = 1, x'(0) = 1, (10Pt.)

Answer only one of the following two questions:

 (Q_8) Solve: $(e^x + e^{-x})\frac{dy}{dx} = y^2$

(8Pt.)

 (Q_9) Solve: $t\frac{dy}{dt} + y = \frac{1}{y^2}; y(0) = 0$

(8Pt.)

Q1	Q2	Q3	$\mathbf{Q4}$	$\mathbf{Q5}$	$\mathbf{Q6}$	Q7	$\mathbf{Q8}$	$\mathbf{Q9}$	Sum	Bal.