KING ABDULAZIZ UNIVERSITY

DEPARTMENT OF MATHEMATICS

Exam/Course: Final Exam - Math-204

Student Name:
Instructor Name:
Time Allowed: 120 Minutes

Student University Number:

Section:
Jan. 20, 2011

$(Q 1)$ Select the correct response:

(i) The D.E. $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{x^{2}+y^{2}}$ is
\square exact \square homogeneous \square separable (2Pt.)
(ii) The D.E. $d x=\left(x y^{2}-y\right) d y$ is
\square RicattilinearBernoulli
(iii) $y=1$ is the unique solution of (IVP): $\frac{d y}{d x}=y \ln y ; y(0)=1$ \square true \square false
(iv) There is a particular solution of $y^{\prime}+P(x) y=Q(x)$ in the form $\int Q(t) e^{\int P(t) d t} d t$ \square true \square false
(v) The function $f(t)=\frac{\sin t}{t}$ is piecewise continuous
\square truefalse
(vi) The function $f(t)=e^{t^{2}}$ is of exponential order \square truefalse (2Pt.)
(vii) The function $F(s)=\frac{s^{2}}{s^{2}+4}$ is not the Laplace transform of a function that is piecewise continuous and of exponential order
\square true \square false
(viii) $\ell^{-1}\{F(s) G(s)\}=\ell^{-1}\{F(s)\} \ell^{-1}\{G(s)\}$
\square truefalse
$\left(Q_{2}\right)$ A mass weighing 16 pounds is attached to a 5 -feet-long spring. At equilibrium the spring measures 8.2 feet. If the mass is initially released from the equilibrium position with an upward velocity 3 feet per second. Find the displacements $x(t)$ if it is further known that the surrounding medium offers a resistance numerically equal to the instantaneous velocity.
(10Pt.)
$\left(Q_{4}\right)$ Find the general solution of: $\left(2 y^{2}+3 x\right) d x+2 x y d y=0$
(8Pt.)
$\left(Q_{5}\right)$ Find the Laplace transform: $(i) \ell\left\{t e^{2 t} \cos 3 t\right\}, \quad$ (ii) $\ell\left\{\int_{0}^{t} \sin \tau \sin (t-\tau) d \tau\right\}$
$\left(Q_{6}\right)$ Find the inverse Laplace transform: (i) $\ell^{-1}\left\{\frac{(s-1) e^{-\pi}}{s^{2}+2 s+10}\right\}, \quad$ (ii) $\ell^{-1}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\} \quad$ (10Pt.)
$\left(Q_{7}\right)$ Use Laplace transform to solve: $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=\digamma_{0} \sin \omega t ; x(0)=1, x^{\prime}(0)=1$,

Answer only one of the following two questions:
$\left(Q_{8}\right)$ Solve: $\left(1+x^{4}\right) d y+x\left(1+4 y^{2}\right) d x=0 ; y(1)=0$ (8Pt.)
$\left(Q_{9}\right)$ Solve: $t^{2} \frac{d y}{d t}+y^{2}=t y ; y(1)=1$
(8Pt.)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Sum	Bal.

