MODEL: C

KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS Exam/Course: Exam II - Math-204

Student Name:	Student University Number:		
Instructor Name:	Section:		
Time Allowed: 90 Minutes	December 25, 2010		
(Q1) Select the correct response with writing	======================================		
(i) If $y_1, y_2,, y_k$ is any set of k linearly independent	solutions of a homogeneous linear differ-		
ential equation of order n , then $y = C_1y_1 + C_2y_2 +$	$+ C_k y_k$ is		
\Box a solution $\hfill \Box$ the general solution $\hfill \Box$ not a solution	(3Pt.)		
(<i>ii</i>) A particular solution y_p of $y''' + y' = 1 + \sin x$ is of the	the form $(5Pt.)$		
$\Box y_p = C_1 + C_2 x \sin x + C_3 x \cos x$ $\Box y_p = C_1 + C_2 \sin x$	$\ln x + C_3 \cos x \Box \ y_p = C_1 x + C_2 x \sin x + C_3 x \cos x$		
(iii) The general solution of $y^{(n)}=0$ is a polynomial	of degree		
\Box n \Box n-1 \Box n+1	(3Pt.)		
(iv) According to the Existence and Uniqueness \mathcal{I}	Theorem the IVP:		
$ay'' + by' + cy = 0; a \neq 0, b, c \in \mathbb{R}, \ y(x_0) = y_0, \ y'(x_0)$	$y = y_1$ has		
\Box one solution \Box an infinitely many solutions \Box no	solution (5Pt.)		

 (Q_2) Solve:

$$\begin{cases} \frac{dx}{dt} = x - y \\ \frac{dy}{dt} = 2x - y \\ x(\pi) = 0, \ y(\pi) = 1. \end{cases}$$
 (11 Pt.)

 (Q_3) Find the general solution of: $x^2y''+xy'-y=rac{1}{x+1}$

(11Pt.)

Answer only two of the following three questions:

(Q₄) Solve: $\frac{d^2x}{dt^2} - \omega^2 x = F_0 \sinh \omega t; \ x(0) = 1, \ x'(0) = 1,$ (6Pt.)

 (Q_5) Find the general solution of: $(1+x^2)y''+2xy'=0; y_1=1,$ (6Pt.)

 (Q_6) Find the general solution of: $(x+2)^2 y'' + (x+2)y' + y = 0,$ (6Pt.)

Q1	Q2	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	Sum	Balance