MODEL: C

KING ABDULAZIZ UNIVERSITY

DEPARTMENT OF MATHEMATICS

Exam/Course: Exam II - Math-204

Student Name:
Instructor Name:
Time Allowed: 90 Minutes

Student University Number:

Section:

December 25, 2010
(Q1) Select the correct response with writing the details:
(i) If $y_{1}, y_{2}, \ldots, y_{k}$ is any set of k linearly independent solutions of a homogeneous linear differential equation of order n, then $y=C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{k} y_{k}$ is
\square asolution $\quad \square$ the general solution \square not a solution
(ii) A particular solution y_{p} of $y^{\prime \prime \prime}+y^{\prime}=1+\sin x$ is of the form
$\square y_{p}=C_{1}+C_{2} x \sin x+C_{3} x \cos x \quad \square y_{p}=C_{1}+C_{2} \sin x+C_{3} \cos x \quad \square y_{p}=C_{1} x+C_{2} x \sin x+C_{3} x \cos x$
(iii) The general solution of $y^{(n)}=0$ is a polynomial of degree
$\square \mathrm{n} \quad \square \mathrm{n}-1 \quad \square \mathrm{n}+1$
(iv) According to the Existence and Uniqueness Theorem the IVP:
$a y^{\prime \prime}+b y^{\prime}+c y=0 ; a \neq 0, b, c \in \mathbb{R}, y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$ has
\square one solution $\quad \square$ an infinitely many solutions \square no solution
$\left(Q_{2}\right)$ Solve:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x-y \tag{11Pt.}\\
\frac{d y}{d t}=2 x-y \\
x(\pi)=0, \quad y(\pi)=1 .
\end{array}\right.
$$

$\left(Q_{3}\right)$ Find the general solution of: $x^{2} y^{\prime \prime}+x y^{\prime}-y=\frac{1}{x+1}$

Answer only two of the following three questions:
$\left(Q_{4}\right)$ Solve: $\frac{d^{2} x}{d t^{2}}-\omega^{2} x=\digamma_{0} \sinh \omega t ; x(0)=1, x^{\prime}(0)=1$,
$\left(Q_{5}\right)$ Find the general solution of: $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0 ; y_{1}=1$,
$\left(Q_{6}\right)$ Find the general solution of: $(x+2)^{2} y^{\prime \prime}+(x+2) y^{\prime}+y=0$,
(6Pt.)

Q1	Q2	Q3	Q4	Q5	Sum	Balance

