MODEL: B

KING ABDULAZIZ UNIVERSITY

DEPARTMENT OF MATHEMATICS

Exam/Course: Exam II - Math-204

Student Name:
Instructor Name:
Time Allowed: 90 Minutes

Student University Number:

Section:

December 25, 2010
(Q1) Select the correct response with writing the details:
(i) If $y_{1}, y_{2}, \ldots, y_{n}$ is any set of solutions of a homogeneous linear differential equation of order n, then $y=C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{n} y_{n}$ is
\square a solution \squarethe general solution \square not a solution
(ii) A particular solution y_{p} of $y^{\prime \prime \prime}-y^{\prime}=2-\sinh x$ is
$\square y_{p}=A x+C_{1} x \sinh x+C_{2} x \cosh x$ $\square y_{p}=A x+C_{1} \sinh x+C_{2} \cosh x$ $\square y_{p}=A x+C_{1} e^{x}+C_{2} e^{-x}$ (iii) The general solution of $y^{\prime \prime \prime}=0$ is \square a polynomial function $\quad \square$ an exponential function $\quad \square$ a trigonometric function
(iv) According to the Existence and Uniqueness Theorem IVP:
$x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6 ; y(0)=3 ; y^{\prime}(0)=1$ has
\square one solution \square an infinitely many solution \square no solution
$\left(Q_{2}\right)$ Solve

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-5 x-y \tag{11Pt.}\\
\frac{d y}{d t}=4 x-y \\
x(1)=0, \quad y(1)=1 .
\end{array}\right.
$$

Answer only two of the following three questions:
$\left(Q_{4}\right)$ Find the general solution of: $\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0 ; y_{1}=1$,
$\left(Q_{5}\right)$ Find the general solution of: $(x-3)^{2} y^{\prime \prime}+(x-3) y^{\prime}+y=0$,
$\left(Q_{6}\right)$ Solve: $\quad \frac{d^{2} x}{d t^{2}}+\omega^{2} x=\digamma_{0} \sin \omega t ; x(0)=1, x^{\prime}(0)=1$,
(6Pt.)

Q1	Q2	Q3	Q4	Q5	Sum	Balance

