KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS Exam/Course: Exam II - Math-204

Student Name:	Student University Number:				
Instructor Name:	Section:				
Time Allowed: 90 Minutes	December 25, 2010				
(Q1) Select the correct response with writing the details:					
(i) If $y_1, y_2,, y_n$ is any set of solutions of a homogeneous linear differential equation of order					
<i>n</i> , then $y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$ is					
$\Box \text{ a solution } \Box \text{ the general solution } \Box \text{ not a solution} $ (3F					
(<i>ii</i>) A particular solution y_p of $y''' - y' = 2 - \sinh x$ is (5.					
$\Box y_p = Ax + C_1 x \sinh x + C_2 x \cosh x \Box y_p = Ax + C_1 \sinh x + C_2 \cosh x \Box y_p = Ax + C_1 e^x + C_2 e^{-x}$					
(iii) The general solution of $y^{\prime\prime\prime}=0$ is					
\Box a polynomial function $ \Box \ $ an exponential function	$\Box \text{ a trigonometric function} \qquad (3Pt.)$				
(<i>iv</i>) According to the Existence and Uniqueness Theorem IVP:					
$x^2y'' - 2xy' + 2y = 6; \ y(0) = 3; \ y'(0) = 1$ has					
\Box one solution \Box an infinitely many solution \Box no solution	ution $(5Pt.)$				

 (Q_2) Solve

$$\begin{cases} \frac{dx}{dt} = -5x - y \\ \frac{dy}{dt} = 4x - y \\ x(1) = 0, \ y(1) = 1. \end{cases}$$
(11 Pt.)

(Q₃) Find the general solution of:
$$4y'' - 4y' + y = e^{\frac{x}{2}}\sqrt{1 - x^2}$$
 (11*Pt.*)

Answer only two of the following three questions:

 (Q_4) Find the general solution of: $(1-x^2)y''+2xy'=0; y_1=1,$ (6Pt.)

 (Q_5) Find the general solution of: $(x-3)^2 y'' + (x-3)y' + y = 0,$ (6Pt.)

(Q_6) Solve:	$\frac{d^2x}{dt^2} + \omega^2 x = F_0 \sin \omega t; \ x(0) = 1, \ x'(0) = 1,$	(6Pt.)
----------------	--	--------

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	\mathbf{Sum}	Balance