MODEL: A

KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS Exam/Course: Exam I - Math-204

Student Name:	Student University Number:				
Instructor Name:	Section:				
Time Allowed: 90 Minutes	March 27, 2011				
(Q1) Select the correct response with writing the	======================================				
(<i>i</i>) The D.E. $(x^2 + 4) dy = (2x - 8xy^2) dx$ is					
\Box exact \Box homogeneous \Box separable	(2Pt.)				
(<i>ii</i>) The D.E. $dx = (xy^2 - y)dy$ is					
\Box Ricatti \Box linear \Box Bernoulli	(2Pt.)				
(<i>iii</i>) The D.E. $(1 + \frac{y}{x} + lnx)dx = (1 - lnx)dy$ is					
$\square exact \square homogeneous \square separable$	(2Pt.)				
(<i>iv</i>) The D.E. $y' = y(1-y)$ has the solution $y = 0$ as					
\Box a singular solution $\hfill \Box$ a particular solution	(5Pt.)				
(v) According to the Existence and Uniqueness Theorem the IVP: $y' = \sqrt{xy}$; $y(0) = 0$ has					
\Box one solution \Box an infinitely many solutions \Box no	solution (5 Pt.)				

 (Q_2) A large tank is filled to capacity with 300 liters of of fluid in which 30 pounds of salt is dissolved. Brine containing 2 grams of salt per liter is pumped into the tank at a rate of 4 liters per minute. The well mixed solution is pumped out at a rate 3 liters per minute. Find the number A(t) of grams of salt in the tank at time t. (8*Pt*.) the reaction is proportional to the product of the instantaneous amounts of A and B not converted to chemical C. Initially, there are 50 grams of A and 32 grams of B, and for each grams of A, 4 grams of B is used. It is observed that 10 grams of C is formed in 5 minutes. How much is formed in 20 minutes? what is the limiting amount of C after a long time?. (8Pt.)

 (Q_4) Solve: $y^{\frac{1}{2}} \frac{dy}{dx} + y^{\frac{3}{2}} = x; y(0) = 4$

 (Q_5) Solve: Solve: $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}; y(1) = 0$

(6Pt.)

 (Q_6) Solve:

$$\frac{dy}{dx} + y = f(x), \quad y(0) = 0, f(x) = \begin{cases} 1 \text{ if } 0 \le x \le 1, \\ 0 \text{ if } x > 1. \end{cases}$$
(6Pt.)

 (Q_7) Solve: $\frac{dy}{dx} = 1 + \sqrt{y - x + 3},$

(6Pt.)

Q1	Q2	Q3	$\mathbf{Q4}$	$\mathbf{Q5}$	$\mathbf{Q6}$	\mathbf{Sum}	Balanced points