MODEL: B

KING ABDULAZIZ UNIVERSITY
 DEPARTMENT OF MATHEMATICS

Exam/Course: Exam I - Math-204

Student Name:

Instructor Name:
Time Allowed: 90 Minutes

Student University Number:

Section:
October 30, 2010
(Q1) Select the correct response with writing the details:
(i) The D.E. $\frac{d y}{d x}=\frac{1}{x(x-y)}$ is
\square separable $\quad \square$ Bernoulli \square linear
(ii) The D.E. $y^{\prime}=y^{2}-1$ has the solution $y=-1$ as
\square a singular solution $\quad \square$ a particular solution
(iii) The D.E. $M(x, y)=\left(1-\frac{3}{y}+x\right) \frac{d y}{d x}$ is exact if
$\square M(x, y)=C(x)+y$
$\square M(x, y)=C(x)-y$
$M(x, y)=C(y)+x$
(iv) According to the Existence and Uniqueness Theorem the IVP: $y^{\prime}=x y^{\frac{1}{2}} ; y(0)=1$ has
\square one solution\square an infinitely many solutionsno solution
$\left(Q_{2}\right)$ A large tank is filled to capacity with 200 gallons of fluid in which 30 pounds of salt is dissolved. Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate 4 gallons per minute. The well mixed solution is pumped out at the same rate. Find the number $\mathrm{A}(\mathrm{t})$ of pounds of salt in the tank at any time t.
$\left(Q_{3}\right)$ An electromotive force

$$
E(t)= \begin{cases}80 & \text { if } 0 \leq t \leq 20 \\ 0 & \text { if } t>20\end{cases}
$$

is applied to an LR series circuit in which the inductance is 10 henries and the resistance is 1 ohms. Find the current $i(t)$ if $i(0)=0$.

Answer only three of the following four questions:
$\left(Q_{4}\right)$ Solve $y^{\prime}=\cos (x+y), y(0)=\frac{\pi}{4}$
(6Pt.)
$\left(Q_{5}\right)$ Solve $x y^{\prime}=y \ln \left(\frac{x}{y}\right)$,
(6Pt.)
$\left(Q_{6}\right)$ Solve $\frac{d y}{d x}=-\frac{4}{x^{2}}-\frac{1}{x} y+y^{2} ; y_{1}=\frac{2}{x}$,
(6Pt.)
$\left(Q_{7}\right)$ Solve $(x+2 y) y^{\prime}=1$,
(6Pt.)

Q1	Q2	Q3	Q4	Q5	Q6	Sum	adapted points

