KING ABDULAZIZ UNIVERSITY DEPARTMENT OF MATHEMATICS Exam/Course: Exam I - Math-204

Student Name:	Student University Number:
Instructor Name:	Section:
Time Allowed: 90 Minutes	October 30, 2010

 $\left(Q1\right)$ Select the correct response with writing the details:

(<i>i</i>) The D.E. $(2x + 3y - 2)y' = 1$ is	
\Box separable \Box Bernoulli \Box linear	(2Pt.)
(<i>ii</i>) The D.E. $y' = y(1-y)$ has the solution $y = 0$ as	
\Box a singular solution \Box a particular solution	(5Pt.)
(<i>iii</i>) The D.E. $(1 + \frac{3}{x} + y)\frac{dx}{dy} = N(x, y)$ is exact if	
$\Box \ N(x,y) = C(y) + x \Box \ N(x,y) = C(y) - x \Box \ N(x,y) = C(x) + y$	(3Pt.)
(iv) According to the Existence and Uniqueness Theorem the IVP: $y'=\sqrt{xy};\ y(0)=0$	has
\Box one solution \Box an infinitely many solutions \Box no solution	(5 Pt.)

 (Q_2) A large tank is filled to capacity with 300 liters of pure water. Brine containing 2 grams of salt per liter is pumped into the tank at a rate of 4 liters per minute. The well mixed solution is pumped out at a rate 3 liters per minute. Find the number A(t) of grams of salt in the tank at time t. (8*Pt*.) (Q_3) An electromotive force

$$E(t) = \begin{cases} 200 \text{ if } 0 \le t \le 10, \\ 0 \quad \text{if } t > 10. \end{cases}$$

is applied to an LR series circuit in which the inductance is 40 henries and the resistance is 8 ohms. Find the current i(t) if i(0) = 0. (9Pt.)

Answer only three of the following four questions:

(Q₄) **Solve:** $y' = sin(x+y); y(0) = \frac{\pi}{4}$

(6Pt.)

 (Q_5) Solve: $ydx + x(\ln x - \ln y - 1)dy = 0$,

(6Pt.)

 (Q_6) Solve: $\frac{dy}{dx} = -2x^2 + \frac{1}{x}y + 2y^2; y_1 = x,$

 (Q_7) Solve: $x \frac{dy}{dx} = 2x e^x - y + 6x^2$,

(6Pt.)

$\mathbf{Q1}$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	$\mathbf{Q6}$	\mathbf{Sum}	adapted points
